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We consider the critical point of two mean-field disordered models: �i� the random energy model �REM�,
introduced by Derrida as a mean-field spin-glass model of N spins and �ii� the directed polymer of length N on
a Cayley Tree �DPCT� with random bond energies. Both models are known to exhibit a freezing transition
between a high-temperature phase where the entropy is extensive and a low-temperature phase of finite
entropy, where the weight statistics coincides with the weight statistics of Lévy sums with index �=T /Tc

�1. In this paper, we study the weight statistics at criticality via the entropy S=−�wi ln wi and the generalized
moments Yk=�wi

k, where the wi are the Boltzmann weights of the 2N configurations. In the REM, we find that

the critical weight statistics is governed by the finite-size exponent �=2: the entropy scales as S̄N�Tc��N1/2,
the typical values eln Yk decay as N−k/2, and the disorder-averaged values Yk are governed by rare events and

decay as N−1/2 for any k�1. For the DPCT, we find that the entropy scales similarly as S̄N�Tc��N1/2, whereas
another exponent ��=1 governs the Yk statistics: the typical values eln Yk decay as N−k, and the disorder-
averaged values Yk decay as N−1 for any k�1. As a consequence, the asymptotic probability distribution
�̄N=��q� of the overlap q, in addition to the delta function ��q�, which bears the whole normalization, contains
an isolated point at q=1, as a memory of the delta peak �1−T /Tc���q−1� of the low-temperature phase T
�Tc. The associated value �̄N=��q=1� is finite for the DPCT, and diverges as �̄N=��q=1��N1/2 for the REM.
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I. INTRODUCTION

Spin glasses �1,2� and directed polymers in random media
�3� are two kinds of disordered models where the relations
between finite-dimensional models and mean-field models
have remained controversial over the years. For the directed
polymer in a random medium of dimension 1+d, with d=3
where a localization-delocalization transition occurs, we
have recently found numerically that the weight statistics is
multifractal at criticality �4�, in close analogy with models of
the quantum Anderson localization transition, where the mul-
tifractality of critical wave functions is well established
�5,6�. In this paper, our aim is to study the critical weight
statistics in the mean-field version of the model, namely, the
directed polymer on a Cayley tree �DPCT� �7–9�. This model
presents many similarities �7,8� with the random energy
model �REM�, introduced by Derrida as a mean-field spin-
glass model �10�: both models are known to exhibit a freez-
ing transition between a high-temperature phase where the
thermodynamic observables coincide with their extensive an-
nealed values, and a low-temperature phase of finite entropy,
in which the weight statistics �11,12� coincides with the
weight statistics of Lévy sums with index �=T /Tc�1 �13�.
Therefore we also study the weight statistics of the REM at
criticality, as well as in Lévy sums at the critical value �c
=1, to compare with the results for the directed polymer on a
Cayley tree. We find that the three models have different
critical finite-size properties.

The paper is organized as follows. In Sec. II, we recall the
main properties of the random energy model and of the di-
rected polymer on a Cayley tree. We then study in parallel
the weight statistics at criticality for the two models: we
describe the properties of the entropy in Sec. III, the decay of
disorder-averaged values Yk in Sec. IV, and the decay of

typical values Yk
typ=eln Yk in Sec. V. To explain the differ-

ences between averaged and typical values, we discuss in
Sec. VI the probability distributions of the maximal weight
wmax and of Y2 over the samples, with a special emphasis on
the rare events that govern average values. Section VII is
devoted to the finite-size properties of the overlap distribu-
tion at criticality. Section VIII contains our conclusions. For
clarity, the weight statistics of Lévy sums is discussed sepa-
rately in the Appendixes: We first recall in Appendix A the
results for ��1, and we describe the critical case �c=1 in
Appendix B.

II. MODELS AND OBSERVABLES

A. Reminder of the random energy model

The random energy model, introduced in the context of
spin glasses �10�, is defined by the partition function

ZN = �
i=1

2N

e−	Ei �1�

where the energies Ei of the 2N configurations of N spins are
assumed to be independent random variables drawn from the
Gaussian distribution

PN�E� =
1

��N
e−E2/N. �2�

This model presents a freezing transition at �10�

Tc =
1

2�ln 2
, �3�

and we now briefly recall the main properties of the high-
and low-temperature phases.
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1. High-temperature phase

In the high-temperature phase T
Tc, the free energy per
spin coincides with the annealed free energy �10�

f�T � Tc� = fann�T� = − T ln 2 −
1

4T
. �4�

As a consequence, the entropy per spin vanishes linearly at
the transition,

s�T � Tc� = sann�T� = ln 2 −
1

4T2 �
T→Tc

+
�T − Tc� , �5�

and the specific heat per spin remains finite,

c�T � Tc� = cann�T� =
1

2T2 �
T→Tc

+
c�Tc

+� = 2 ln 2. �6�

2. Low-temperature phase

From the thermodynamic point of view, the low-
temperature phase T�Tc is completely frozen, with a con-
stant free energy per spin �10�

f�T � Tc� = − �ln 2. �7�

As a consequence, the entropy per spin vanishes in the whole
low-temperature phase,

s�T � Tc� = 0, �8�

as well as the specific heat per spin,

c�T � Tc� = 0. �9�

To understand better the properties of this low-
temperature phase, it is convenient to study the statistical
properties of the configuration weights in the partition func-
tion �Eq. �1��

wi =
e−	Ei

ZN
. �10�

It turns out that their statistics is in direct correspondence
with Lévy sums of index 0��=T /Tc�1 �13� �see Appen-
dix A for more details�. In particular, the moments

Yk = �
i=1

2N

wi
k �11�

have for disorder averages �13�

Yk =

„k − ��T�…


�k�
„1 − ��T�…
with ��T� =

T

Tc
. �12�

The density f�w� giving rise to these moments,

Yk = 	
0

1

dw wkf�w� , �13�

reads �13�

f�w� =
w−1−��1 − w��−1


���
�1 − ��
�14�

and represents the averaged number of terms of weight w.
This density is nonintegrable as w→0, because in the limit
N→� the number of terms of vanishing weight diverges.
The normalization corresponds to

Yk=1 = 	
0

1

dw wf�w� = 1. �15�

In particular, as the transition is approached �=T /Tc
→1− these disorder-averaged moments all vanish linearly for
k�1

Yk �
T→Tc

−
�Tc − T� . �16�

The link between these weight properties and the thermo-
dynamics is via the total entropy �14�

SN = − �
i=1

2N

wi ln�wi� = − 
�k�
i=1

2N

wi
k�

k→1

= − ��kYk�k→1.

�17�

From Eq. �12�, the disorder-averaged value over the samples
reads

S̄N�T � Tc� = − ��kȲk�k→1 = 
��1� −

�„1 − ��T�…

„1 − ��T�…

. �18�

In the critical region T→Tc
−, the entropy per spin presents

the following finite-size scaling behavior:

sN�T� �
SN�T�

N
�

T→Tc
−

1

N�Tc − T�
. �19�

Similarly, the disorder-averaged specific heat per spin fol-
lows:

cN�T� �
CN�T�

N
�

T→Tc
−

1

N�Tc − T�2 . �20�

These finite-size scaling behaviors are in agreement with the
more detailed finite-size corrections of the free energy com-
puted in �10�.

B. Reminder of the directed polymer on a Cayley tree

The directed polymer on a Cayley tree with disorder was
introduced in �7� as a mean-field version of the directed
polymer in a random medium �3�. The model is defined by
the partition function

ZN = �
C

e−	E�C�, �21�

where the 2N configurations C are the paths of N steps on a
Cayley tree with coordination number K=2. The energy E�C�
of a path is the sum of the energies of the visited bonds. Each
bond has a random energy drawn independently, for instance
with the Gaussian distribution

CÉCILE MONTHUS AND THOMAS GAREL PHYSICAL REVIEW E 75, 051119 �2007�

051119-2



���� =
1

�2�
e−�2/2. �22�

As in Eq. �10�, it is convenient to consider the configuration
weights w�C�=e−	E�C� /ZN in the partition function �Eq. �21��
and the associated moments Yk �Eq. �11��.

1. Similarities with the random energy model

This model presents many similarities �7,8� with the ran-
dom energy model described above. It presents a freezing
transition at

Tc =
1

�2 ln 2
. �23�

The free energy per step coincides with the annealed free
energy above Tc and is completely frozen below,

f�T� = 
 fann�T� = − T ln 2 −
1

2T
for T 
 Tc, �24�

− �2 ln 2 for T � Tc. �25�
�

So, at the thermodynamic level, all properties are the same as
in the REM: The entropy per step vanishes linearly at the
transition �Eq. �5��, and the specific heat per step presents a
jump �Eq. �6��. From the finite-size behavior of the free en-
ergy for T�Tc �Eq. �76� of �8��, one obtains by differentia-
tion with respect to the temperature that the entropy per step
and the specific heat per step have the same finite-size scal-
ing as in the REM �Eqs. �19� and �20��,

sN�T� �
SN�T�

N
�

T→Tc
−

1

N�Tc − T�
, �26�

cN�T� �
CN�T�

N
�

T→Tc
−

1

N�Tc − T�2 . �27�

It turns out that setting aside even these thermodynamic
quantities, the two models are still very similar. In �7�, it was
shown that, in the limit N→�, the distribution of the overlap
q between two walks on the same disordered tree is simply
the sum of two � peaks at q=0 and 1 in the whole low-
temperature phase �7�:

��q� = �1 − Y2���q� + Y2��q − 1� , �28�

and the distribution of Y2 over the samples is exactly the
same as in the random energy model �7�. In particular, its
averaged value reads �7�

Y2�T� = 1 −
T

Tc
. �29�

2. Differences from the random energy model

As explained in detail in �8�, the difference from the ran-
dom energy model is that the directed polymer on a Cayley
tree corresponds to a generalized random energy model
�GREM� with p=N levels, whereas the REM corresponds to

the case of a GREM with p=1 level. This induces some
differences for the finite-size properties of the free energy
�8�. The conclusion of �8� is that the finite-size scaling be-
havior of the REM only involves the product �Tc−T�N1/�

with

� = 2, �30�

whereas for the Cayley tree, the situation is more subtle, and
the product �Tc−T�N1/�� with another exponent

�� = 1 �31�

also appears. As a consequence, even if the weight statistics
is the same in the low-temperature phase of the two models,
their critical properties might be different, as we will indeed
find in the following.

C. Numerical details

The numerical results given in the following sections for
the REM and the DPCT have been obtained for the following
sizes N �with 2N configurations� and the corresponding num-
bers ns�N� of disordered samples

N = 5 – 14,16,18,20, �32�

ns�N� = 107,4 � 106,106,4 � 105. �33�

III. ENTROPY AT CRITICALITY

A. Disorder-averaged entropy at criticality

We have recalled in the previous section that both for the
random energy model and for the directed polymer on the
Cayley tree, the freezing transition corresponds to a jump in
the intensive specific heat,

cN�T � Tc� �
T→Tc

+
const, �34�

cN�T � Tc� �
T→Tc

−

1

N�Tc − T�2 . �35�

The finite-size scaling thus involves the exponent �=2,

cN�T� = C„�Tc − T�N1/�
… with � = 2. �36�

For the REM, the explicit form of the scaling function can be
obtained from Eq. �64� of �8�.

Similarly, the total disorder-averaged entropy has the fol-
lowing behaviors on both sides of the transition:

SN�T � Tc� �
T→Tc

+
N�T − Tc� , �37�

SN�T � Tc� �
T→Tc

−

1

Tc − T
. �38�

One thus expects the following finite-size scaling form:

SN�T� = N1/2S„�Tc − T�N1/�
… with � = 2. �39�

At criticality, we thus expect both for the REM and for the
directed polymer on the Cayley tree
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SN�Tc� � N1/2, �40�

in agreement with our numerical simulations for both mod-
els.

B. Entropy distribution at criticality

We show in Figs. 1 and 2 the probability distribution
PN�S� of the entropy S for the REM and for the DPCT,
respectively, both at criticality and in the high-temperature
phase for comparison. At criticality, PN�S� remains broad

around the averaged value S̄�N1/2, with a slow decay of rare
events of small entropy S�0. The comparison of Figs. 1�a�
and 2�a� shows that these rare finite samples that are still
“frozen” at Tc do not obey the same statistics in the REM

and in the DPCT �see the more detailed discussion on rare
events in Sec. VI C�. In the high-temperature phase, the

width around the average value S̄=Nsann�T� decays exponen-
tially in N in the REM �15�, as shown in Fig. 1�b�, whereas it
converges toward a constant in the DPCT, as shown in Fig.
2�b�.

IV. DECAY OF DISORDER-AVERAGED VALUES YK„N…

AT CRITICALITY

A. Special case k=2

As already mentioned in Eq. �29�, for k=2, the explicit
expression of Y2�N� is particularly simple in the low-
temperature phase,
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P (S)
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N=20

N=5
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60

P (S)
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N=20

N=5

(a)

(b)

FIG. 1. �Color online� REM: entropy probability distribution
PN�S� for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the

distribution remains broad around the averaged value S̄�N1/2, with
a slow decay of rare events of small entropy S�0. �b� At T=2

�Tc, the width around the average value S̄=Nsann�T� decays expo-
nentially in N, in agreement with Ref. �15�.
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FIG. 2. �Color online� DPCT: entropy probability distribution
PN�S� for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the

distribution remains broad around the averaged value S̄�N1/2. The
statistics of rare events in the region S�0 is different from that in
the REM �see Fig. 1�a��. �b� At T=2�Tc. the width around the

average value S̄=Nsann�T� converges toward a constant, in contrast
with the REM �see Fig. 1�b��.
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Y2�T � Tc� =
Tc − T

Tc
. �41�

In the REM where the only finite-size scaling exponent is
�=2 �Eq. �30��, one thus expects at criticality

�Y2�Tc,N��REM �
N→�

1

N1/2 , �42�

in agreement with our numerical simulations, as shown in
Fig. 3. For the DPCT, however, we find numerically that the
decay of Y2 is governed by the exponent ��=1 �Eq. �31�� at
criticality

�Y2�Tc,N��DPCT �
N→�

1

N
�43�

as shown in Fig. 3.

B. Other values of k

For arbitrary k, the explicit value �Eq. �12�� can be ex-
panded in �Tc−T� /Tc as follows:

Yk�T � Tc� =
�Tc − T�
�k − 1�Tc

�1 + O�Tc − T�� . �44�

For the REM where the only finite-size scaling exponent is
�=2 �Eq. �30��, one thus expects at criticality

�Yk�Tc,N��REM =
1

�k − 1�N1/2
1 + O� 1

N1/2�� , �45�

in agreement with our numerical simulations. For the DPCT,
we find numerically that it is the exponent ��=1 �Eq. �31��
that governs the critical behavior

�Yk�Tc,N��DPCT �
1

N

1 + O� 1

N
�� . �46�

V. DECAY OF TYPICAL VALUES YK
TYP

„N…=elnYk

AT CRITICALITY

From the explicit expression Eq. �A19� of ln Yk in the
low-temperature phase with �=T /Tc, one obtains the follow-
ing expansion in �Tc−T�:

ln Yk = k�1 + a1�Tc − T� + O„�Tc − T�2
…�ln�Tc − T� + b0

+ b1�Tc − T� + O„�Tc − T�2
… . �47�

For the REM where the only finite-size scaling exponent is
�=2 �Eq. �30��, one thus expects at criticality

�ln Yk�Tc,N��REM � −
k

2
1 + O� 1
�N

��ln N + const

+ O� 1
�N

� , �48�

in agreement with our numerical simulations.
For the DPCT, we find that it is the exponent ��=1 that

governs the decay of typical weights

�ln Yk�Tc,N��DPCT � − k
1 + O� 1

N
��ln N + const + O� 1

N
� .

�49�

To summarize, the exponents governing the decay of typi-
cal values are exactly linear in k in both models,

�Yk
typ�N��REM = eln Yk �

1

Nk/2 �50�

and

�Yk
typ�N��DPCT = eln Yk �

1

Nk , �51�

in contrast with disorder-averaged values, where the expo-
nents do not depend on k �Eqs. �45� and �46��. To explain this
difference, we now discuss the histograms of wmax and of Y2
at criticality.

VI. PROBABILITY DISTRIBUTIONS OF wmax AND OF Y2

AT CRITICALITY

A. Probability distribution of wmax„N… at criticality

For each sample, we consider the maximal weight

wmax = maxi�wi� �52�

among the 2N configurations. We show in Figs. 4 and 5 the
probability distribution PN�ln wmax� over the samples for the
REM and the DPCT, both at criticality and in the high-
temperature phase for comparison. At criticality, PN�ln wmax�
remains broad around the averaged value,

ln wmax � 
−
1

2
�ln N� + ¯ for the REM, �53�

− �ln N� + ¯ for the DPCT, �54�
�

with a slow decay of rare events near the origin, ln wmax
�0. Again, as for the entropy distribution �see Figs. 1�a� and

1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

ln Y
2

ln N

REM

DPCT

FIG. 3. �Color online� At criticality, the slope of ln Y2�N ,Tc� as
a function of �ln N� �here 5�N�20� is of order 1 /�=0.5 for the
REM ��� and of order 1 /��=1 for the DPCT ���.
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2�a��, the statistics of these rare still frozen samples is not the
same in the REM and in the DPCT as shown in Figs. 4�a�
and 5�a�. In the high-temperature phase, the width around the
average value ln wmax�−N converges toward a constant in
both models, as shown in Figs. 4�b� and 5�b�.

B. Probability distribution of Y2 at criticality

We show in Figs. 6 and 7 the probability distribution
PN�ln Y2� over the samples for the REM and the DPCT, both
at criticality and in the high-temperature phase for compari-
son. At criticality, PN�ln Y2� remains broad around the aver-
aged value,

ln Y2 � �− �ln N� + ¯ for the REM, �55�
− 2�ln N� + ¯ for the DPCT, �56��

with again a different decay of rare events near the origin,
ln Y2�0. In the high-temperature phase, the width around
the average value ln Y2�−N converges toward zero for the
REM, as shown in Fig. 6�b�, and toward a finite constant for
the DPCT, as shown in Fig. 7�b�.

As a final remark, it is interesting to compare the prob-
ability distribution of ln Y2 at criticality for the directed poly-
mer on the Cayley tree �Fig. 7�a�� and in dimension 1+3 �see
Fig. 3a of �4��, where as N grows, the distribution simply
shifts along the x axis with a fixed shape.

−4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

N=20

N=5

ln w
max

P(ln w )
max

−10 −8 −6 −4 −2 0
0

0.5

1

1.5

ln w
max

P(ln w )
max

N=20
N=5

(a)

(b)

FIG. 4. �Color online� REM: Probability distribution
PN�ln wmax� of the maximal weight among the 2N configurations,
for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the distri-
bution remains broad around the averaged value ln wmax

�−�ln N� /2, with a slow decay of rare events near the origin,
ln wmax�0. �b� At T=2�Tc, the width around the average value
ln wmax�−N converges toward a constant.
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FIG. 5. �Color online� DPCT: Probability distribution
PN�ln wmax� of the maximal weight among the 2N configurations,
for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the distri-
bution remains broad around the averaged value ln wmax�−�ln N�,
with a slow decay of rare events near the origin, ln wmax�0. �b� At
T=2�Tc, the width around the average value ln wmax�−N con-
verges toward a constant.
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C. Rare events where wmaxÈ1 and Y2È1

In the low-temperature phase T�Tc, the statistical prop-
erties of wmax and Y2 have been studied in detail in �12�. In
particular, the probability distribution PT�Tc

�wmax� coincides
for 1 /2�wmax�1 with the weight density f�w� given in Eq.
�14�. Near the transition �=T /Tc→1−, the singularity near
wmax reads

PT�Tc
�wmax� = fT�Tc

�wmax� �
wmax→1

�1 − ���1 − wmax��−1.

�57�

In this section, we are interested in the behavior of the prob-
ability distribution PTc,N�wmax� near wmax→1 for finite
samples at criticality,

PTc,N�wmax� = fTc,N�wmax� �
wmax→1

AN�1 − wmax��. �58�

The same singularity governs the probability distribution of
Y2,

PTc,N�Y2� �
Y2→1

AN�1 − Y2��. �59�

The amplitude AN represents the global scaling of the rare
samples which are still frozen, whereas the exponent � de-
scribes the shape of the singularity. These rare events govern
the disorder-averaged values Yk at criticality �Eq. �13��, and
for large k, the exponent � governs the power-law depen-
dence in k,
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FIG. 6. �Color online� REM: Probability distribution PN�ln Y2�
for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the distri-
bution remains broad around the averaged value ln Y2�−�ln N�,
with a slow decay of rare events near the origin, ln Y2�0. �b� At
T=2�Tc, the width around the average value ln Y2�−N converges
toward zero.
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FIG. 7. �Color online� DPCT: Probability distribution PN�ln Y2�
for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� At Tc, the distri-
bution remains broad around the averaged value ln Y2�−2�ln N�,
with a slow decay of rare events near the origin, ln Y2�0. �b� At
T=2�Tc, the width around the average value ln Y2�N converges
toward a constant.
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Yk�N� �
k→�

AN

k1+� . �60�

For the REM, where all finite-size scaling properties in-
volve the factor �Tc−T�N1/2, we expect

AN
REM �

N→�

1

N1/2 , �61�

�REM = 0. �62�

This is in agreement via Eq. �60� with the leading behavior
of the disorder-averaged values Yk of Eq. �45�. We show in
Fig. 8 the behavior of the probability distributions of wmax
and Y2 near wmax→1 and Y2→1.

For the DPCT, the situation is more subtle. From the be-
havior in N of disorder-averaged values of Eq. �46�, we con-
clude that the amplitude is governed by ��=1,

AN
DPCT �

N→�

1

N
. �63�

However, in contrast with the REM, the behavior of the
probability distributions of wmax and Y2 near wmax→1 and
Y2→1 shown in Fig. 9 corresponds to a value ��1 for the
singularity exponent. The measure of the k dependence of
Eq. �60� indeed leads to a value of order

�DPCT � 1.5. �64�
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FIG. 8. �Color online� REM at criticality: Statistics of rare finite
samples which are still frozen at Tc for sizes N
=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� Probability distribution of
the maximal weight wmax in the region 1/2�wmax�1. �b� Probabil-
ity distribution of Y2 in the region 1/2�Y2�1.
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FIG. 9. �Color online� DPCT at criticality: Statistics of rare
finite samples which are still frozen at Tc for sizes N
=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a� Probability distribution of
the maximal weight for sizes wmax in the region 1/2�wmax�1;
note the difference from the REM �Fig. 8�a� and 8�b��. �b� Prob-
ability distribution of Y2 in the region 1/2�Y2�1; note the differ-
ence from the REM �Fig. 8�b��.
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The fact that a finite � appears at criticality for the DPCT,
in contrast with the REM where �=0 in continuity with the
low-temperature phase, indicates that the tree structure plays
a role at criticality, in contrast with the low-temperature
phase, where the overlap distribution is concentrated on q
=0 and 1 �Eq. �28��. In the next section, we describe the
finite-size properties of the overlap distribution at criticality.

VII. OVERLAP DISTRIBUTION AT CRITICALITY

In disorder-dominated phases, the order parameter is the
“overlap” between two thermal configurations in the same
disordered sample. In this section, we discuss in detail the
overlap distribution for the DPCT, and compare with the
REM case at the end.

For the DPCT, we consider the probability PN�t� that two
walks of N steps have t common bonds in a fixed sample of
a Cayley tree, where the possible values are t=0,1 , . . . ,N.
The normalization reads

�
t=0

N

PN�t� = 1. �65�

The usual overlap distribution �N�q� concerning the fraction
q= t /N of common bonds reads

�N�q� = NPN�t = Nq� �66�

with the normalization

	
0

1

dq �N�q� = 1. �67�

A. Reminder of the overlap distribution for T�Tc

for the DPCT

As recalled in Eq. �28�, the distribution of the overlap q
between two walks on the same disordered tree is simply the
sum of two � peaks at q=0 and 1 in the whole low-
temperature phase �7�, and in particular the disorder average
over the samples reads �Eq. �29��

�̄N=��q� =
T

Tc
��q� + �1 −

T

Tc
���q − 1� . �68�

The finite-size corrections have been studied in �16,17�: the
probability PN�t� is finite at t=0 and N, whereas for 0� t
�N, the disorder-averaged probability PN�t� obeys the scal-
ing

P̄N�0 � t � N� �
N→�

1

N3/2�� t

N
� �69�

where the function ��q� presents the singularities q−3/2 and
�1−q�−3/2 near the two boundaries q→0 and q→1. For the
finite-size overlap distribution, Eq. �69� translates into the
finite-size correction

�̄N�0 � q � 1� �
N→�

1

N1/2��q� �70�

to the asymptotic result of Eq. �68�.

B. Finite-size overlap distribution at Tc for the DPCT

In the limit N→�, Eq. �68� becomes for T=Tc

�̄Tc,N=��q� = ��q� , �71�

i.e., the whole normalization is concentrated on q=0. Here
we are interested in the finite-size corrections to this result.
We show in Figs. 10�a� and 10�b� the probability distribu-

tions P̄Tc,N�t� and �̄Tc,N�q� for various sizes. We now discuss
the intermediate region 0�q�1 and the two limit values
q=0 and 1.

1. Region of intermediate overlap 0�q�1

For 0� t�1, we find numerically that the disorder-

averaged probability P̄N�t� obeys the scaling
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FIG. 10. �Color online� DPCT at criticality. �a� Logarithm of the

disorder-averaged probability distribution P̄N�t� of the number t
=0,1 , . . . ,N of common bonds between two walks for sizes N
=10 ���, 12 ���, 14 ���, 16 ���, 18 ���, 20 ���. �b� Test of the
scaling form of Eq. �73� for the disorder-averaged probability dis-
tribution �̄N�q� of the overlap 0�q= t /N�1: ln ��q�
=ln�N0.5�̄N�q�� as a function of q.
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P̄N�0 � t � N� �
N→�

1

N1.5�� t

N
� �72�

or equivalently for the disorder-averaged overlap distribution
�̄N�q� of Eq. �66�,

�̄N�0 � q � 1� �
N→�

1

N0.5��q� �73�

as shown in Fig. 10�b�.

2. Region of zero overlap q=0 at criticality

For finite t and N→�, P̄N�t� converge to finite values as
shown in Fig. 10�a�, in particular,

P̄N�t = 0� �
N→�

0.23, �74�

P̄N�t = 1� �
N→�

0.15, �75�

such that the normalization of these finite values correspond-
ing to q=0 after rescaling, is 1 �Eq. �71��. From the matching
with the scaling regime of Eq. �72�, one expects the follow-
ing power-law decay for large t:

P̄N=��t� �
t→�

1

t1.5 . �76�

3. Probability of full overlap q=1 at criticality

By definition, the probability PN�N� of a full overlap t
=N coincides with the probability Y2=�wi

2 that the two
walks end at the same point,

PTc,N�t = N� � Y2�N,Tc� . �77�

Using Eq. �43�, the average over the samples yields

P̄Tc,N�N� � Y2�N,Tc� �
N→�

1

N
. �78�

For the disorder-averaged overlap distribution of Eq. �66�,
we thus obtain that �̄Tc,N�q=1� remains finite as N→�:

�̄Tc,N�q = 1� �
N→�

�̄N=��q = 1� � 0. �79�

In addition to the delta function ��q� which bears the whole
normalization �Eq. �71��, the asymptotic probability distribu-
tion �̄N=��q� of the overlap q thus contains an isolated point
at q=1 where �̄N=��q=1��0. This finite value at q=1 is due
to rare events, since the typical value at q=1 is of order �Eq.
�51��

�Tc,N
typ �q = 1� = NY2

typ�N,Tc� �
N→�

1

N
. �80�

We show in Fig. 11�a� the probability PTc,N(��q=1�) over
the samples of the probability density �N�q=1� of full over-
lap between two configurations. From the probability of rare
events with Y2→1 of Eq. �59�, one obtains via the change of

variables �N�q=1�=NY2 the following singularity near the
maximal value ��q=1�→N:

PTc,N„��q = 1�… �
��q=1�→N

AN

N1+� �N − ��q = 1��� �81�

where AN
�DPCT��1/N and �DPCT�1.5.

C. Overlap distribution at criticality in the REM

In the REM with N spins, the spin overlap

t = �
i=1

N

Si
�1�Si

�2� �82�

can be defined from its relation with the p-spin-glass model
�13,14� in the limit p→�. It is t=N if the two configurations
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FIG. 11. �Color online� Statistics over the samples of the prob-
ability density ��q=1� of full overlap between two configurations
at criticality, for sizes N=5,6 ,7 ,8 ,9 ,10,12,14,16,18,20. �a�
Logarithm of the probability distribution P(��q=1�) for the DPCT.
�b� Logarithm of the probability distribution P(��q=1�) for the
REM.
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are identical, C�1�=C�2�, and t�N if the two configurations
are different, C�1��C�2�.

As in Eq. �78�, the probability PN�N� of a full overlap t
=N coincides with the probability Y2=�wi

2 that the two con-
figurations are the same. Using Eq. �42�, the average over the
samples yields

P̄Tc,N
REM�N� � Y2�N,Tc� �

N→�

1

N1/2 . �83�

For the overlap distribution of Eq. �66�, we thus obtain that
�̄Tc,N�q=1� diverges as N→�,

�̄Tc,N
REM�q = 1� �

N→�
N1/2. �84�

In addition to the delta function ��q� which bears the whole
normalization �Eq. �71��, the asymptotic probability distribu-
tion �̄N=��q� of the overlap q thus contains an isolated point
at infinity as a memory of the delta peak �1−T /Tc���q−1� of
the low-temperature phase T�Tc. Again this divergence at
q=1 is due to rare events. However here, in contrast with the
directed polymer �Eq. �80��, the typical value at q=1 remains
finite �Eq. �50��,

�Tc,N
typ �q = 1� = NY2

typ�N,Tc� � const. �85�

We show in Fig. 11�b� the probability PTc,N(��q=1�) over
the samples of the probability density �N�q=1� of full over-
lap between two configurations. The singularity near the
maximal value is given by Eq. �81� where AN

�REM��1/N1/2

and �REM =0.

VIII. CONCLUSION

In this paper, we have studied the weight statistics at criti-
cality for the random energy model and for the directed poly-
mer on a Cayley tree with random bond energies. These two
mean-field disordered models present freezing transitions
with similar thermodynamic properties. In particular, be-
tween the high-temperature phase of extensive entropy and
the low-temperature phase of finite entropy, the entropy at

criticality scales as S̄N�Tc��N1/2 in both models. However,
the statistical properties of the weights, which coincide in the
low-temperature phase, become different at the critical point.
In the REM, all critical properties are governed by the finite-
size exponent �=2: the typical values eln Yk decay as N−k/2,
and the disorder-averaged values Yk are governed by rare
events and decay as N−1/2 for any k�1. In the DPCT, we find
that the weight statistics is not governed by the exponent �
=2 of the thermodynamics, but by another exponent ��=1
that had been previously mentioned in �8� in connection with
finite-size corrections to the free energy below and at Tc. In
particular, the typical values eln Yk decay as N−k, and the
disorder-averaged values Yk decay as N−1 for any k�1. We
have also presented numerical histograms at criticality for
the entropy, the maximal weight wmax and Y2. We have em-
phasized the role of the rare samples that are still frozen at Tc
�i.e., the rare samples having S�0, wmax�1, Y2�1� since it
is the amplitude of these rare events that governs the

disorder-averaged values Yk as well as the overlap probabil-
ity density �̄Tc,N�q=1� of full overlap q=1. In particular, we
have obtained the result that, in addition to the delta function
��q� which bears the whole normalization, the disorder-
averaged asymptotic probability distribution �̄Tc,N=��q� con-
tains an isolated point at q=1 as a memory of the delta peak
�1−T /Tc���q−1� of the low-temperature phase T�Tc. The
associated value �̄N=��q=1� is finite for the DPCT, and di-
verges as �̄N=��q=1��N1/2 for the REM.

Concerning the weight statistics at criticality for the di-
rected polymer, let us finish by some comparison between
the mean-field version on the Cayley tree considered here
and the finite-dimensional version that we have studied re-
cently in �4�. We should first recall that, in finite dimension
d, the weights of the O�Nd� possible spatial positions of the
polymer end point do not coincide with the configuration
weights, in contrast with the Cayley tree, where the end
points are in one-to-one correspondence with the 2N configu-
rations. In finite dimension, the probability distributions of
the maximal weight wmax and of Y2 reach the values wmax
=1 and Y2=1 only for T�Tgap, where Tgap�Tc �18�,
whereas on the Cayley tree these two temperatures coincide,
Tgap=Tc. This is why, on the Cayley tree, the disorder-
averaged values Yk for k�1 all decay with a k-independent
exponent Yk�1/N representing the amplitude of rare events
where wmax�1, whereas in finite dimension, the disorder-

averaged values Yk decay as Yk�1/N�k−1�D̃�k�, where the ex-

ponents D̃�k� have a finite limit D̃�+���0. Also, in finite
dimension, the comparison with the exponents D�k� govern-
ing the decay of typical values Yk

typ=eln Yk �1/N�k−1�D�k�

shows that the threshold kc between the region k�kc, where

they coincide, D�k�= D̃�k�, and the region k�kc, where they

differ, D�k�� D̃�k�, is of order kc�2 �4�, whereas on the
Cayley tree the exponents for averaged and typical values are
always different as soon as k�1. So the role of rare events is
stronger on the Cayley tree.

APPENDIX A: LÉVY SUMS FOR ��1

In this appendix, we recall some properties of Lévy sums
with ��1, since their weight statistics is the same as in the
random energy model in the low-temperature phase with
��T�=T /Tc.

1. Weight statistics in Lévy sums

The sum

�M = �
i=1

M

xi �A1�

of M positive independent variables �x1 , . . . ,xM� distributed
with a probability distribution that decays algebraically

��x� �
x→+�

A

x1+� �A2�

has a very special property when 0���1 since the first
moment diverges, �x�= +� �13,19�: the sum �M grows as
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M1/�, and the rescaled variable is distributed with a stable
Lévy distribution. Another important property is that the
maximal variable xmax�M� among the M variables
�x1 , . . . ,xM� is also of order M1/�, i.e., the sum �M is actually
dominated by the few biggest terms. To quantify this effect,
it is convenient to introduce the weights

wi =
xi

�M
�A3�

and their moments

Yk = �
i=1

M

wi
k. �A4�

The link with the weight statistics in the random energy
model can be understood as follows. The lowest energy in
the REM is distributed exponentially,

Pextremal�E� �
E→−�

e�E. �A5�

This exponential form, which corresponds to the tail of the
Gumbel distribution for extreme-value statistics �20,21�, im-
mediately yields that the Boltzmann weight x=e−	E has a
distribution that decays algebraically �Eq. �A2�� with expo-
nent

� = T� . �A6�

In the REM, the coefficient � in the exponential �Eq. �A5�� is
�=1/Tc.

Let us also mention that in the mean-field Sherrington-
Kirkpatrick �SK� model of spin glasses, exactly the same
expressions for Yk �Eq. �A8�� also appear �2,22�, but with a
different interpretation: the weights are those of the pure
states. As a consequence, the parameter ��T�, which is a
complicated function of the temperature, vanishes at the tran-
sition ��Tc�=0 �only one pure state in the high-temperature
state� and grows as T is lowered toward ��T=0� of order 0.5
�23�. This is in contrast with the REM model where ��T�
=T /Tc grows with the temperature from ��T=0�=0 �only
one ground state� to ��Tc�=1 at the transition, where the
number of important microscopic states is no longer finite.
Nevertheless, the expression �Eq. �A8�� for the weights of
pure states means that the free energy f of pure states in the
SK model is distributed exponentially,

P�f� �
f→−�

e��T�f , �A7�

with a parameter ��T�=��T� /T.

2. Disorder-averaged moments Yk
Lévy

The averaged values in the limit M→� are finite for 0
���1 and read �13�

Yk
Lévy =


�k − ��

�k�
�1 − ��

. �A8�

Let us recall how one derives this result �13�, since it will be
useful for the critical case �c=1 considered in Appendix B.

It is convenient to exponentiate the denominator according to
�13�

Yk =
1


�k�	0

+�

dt tk−1 exp�− t�
i

xi
k��

j

xj
k �A9�

in order to perform the average

Yk
Lévy =

M


�k�	0

+�

dt tk−1 xke−tx �e−tx�M−1. �A10�

For large M, the integral will be dominated by the region
where t is small, and one may approximate �13�

xke−tx =	 dx ��x�xke−tx � At�−k
�k − �� �A11�

and

e−tx =	 dx ��x�e−tx � e−t�A�−
�−���, �A12�

yielding

Yk
Lévy =

MA
�k − ��

�k� 	

0

+�

dt t�−1e−Mt�A�−
�−���,

�A13�

leading to Eq. �A8� in the limit M→�. More generally, cor-
relation functions between Yk can also be computed �13�, in
particular,

Yk
2Lévy =

1


�2k�
�
�2k − ��


�1 − ��
+ �


2�k − ��

2�1 − ��� . �A14�

3. Typical values Yk
Lévy

„typ…=eln Yk

To compute the disorder average of the logarithm of Yk,
we first rewrite

ln Yk = ln��
i=1

M

xi
k� − k ln��

i=1

M

xi� �A15�

and use the identity

ln Z = 	
0

+� dt

t
�e−t − e−tZ�

= lim
�→0

�	
0

+�

dt t�−1e−t − 	
0

+�

dt t�−1e−tZ� . �A16�

Using Eq. �A12�, we obtain

ln��
i=1

M

xi� = 	
0

+� dt

t
�e−t − �e−tx�M�

� �1 −
1

�
�
��1� +

1

�
ln�MA�− 
�− ���� ,

�A17�

and similarly
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ln��
i=1

M

xi
k� = 	

0

+� dt

t
�e−t − �e−txk

�M� � �1 −
k

�
�
��1�

+
k

�
ln�M

A

k

− 
�−

�

k
��� , �A18�

so that finally in the limit M→� �Eq. �A15��

ln Yk = �1 − k�
��1� +
k

�
ln�
�1 − �/k�


�1 − �� � . �A19�

4. Critical behaviors near the transition point �\�c=1

As �→1, Eq. �A19� gives the following leading term:

ln Yk � k ln�1 − �� , �A20�

i.e., the typical values vanish as

Yk
Lévy�typ� = eln Yk � �1 − ��k, �A21�

whereas the averaged moments of Eq. �A8� vanish linearly as

Yk
Lévy =

�1 − ��
k − 1

+ O„�1 − ��2
… , �A22�

as well as higher moments, for instance, Eq. �14�,

Yk
2Lévy �

�1 − ��
2k − 1

+ O„�1 − ��2
… . �A23�

This shows that disorder-averaged values are governed by
the rare events where the maximal weight wmax is near 1: the
density f�w� of Eq. �14� becomes for �→1

fLévy�w� �
�→1

�1 − ��w−1−��1 − w��−1. �A24�

APPENDIX B: WEIGHT STATISTICS FOR LÉVY SUMS
AT CRITICALITY �c=1

In this appendix, we describe some results on the weight
statistics for Lévy sums at criticality �c=1 to compare with
the results given in the text for the random energy model and
for the directed polymer on a Cayley tree. For �c=1, the sum
�M of Eq. �A1� scales as M ln M, whereas the maximal value
xmax among the M variables scales as M �19�: the decay of
the Yk is thus expected to depend on the variable �ln M�.

1. Decay of disorder-averaged values Yk„M…

We start from Eq. �A10�,

Yk =
M


�k�	0

+�

dt tk−1xke−tx�e−tx�M−1. �B1�

For large M, the integral will be dominated by the region
where t is small, and one may approximate

xke−tx =	 dx ��x�xke−tx � At1−k
�k − 1� �B2�

and

e−tx =	 dx ��x�e−tx � e−At ln�1/t�, �B3�

yielding

Yk =
MA

k − 1
	

0

+�

dt e−MAt ln�1/t� �
1

�k − 1�ln M
. �B4�

2. Disorder-averaged entropy

From Eq. �B1�, the disorder-averaged entropy �Eq. �17��
reads

S�M� = − �k�Yk�k=1 = M	
0

+�

dt�e−tx�M−1	 dx ��x���
��1�

− ln t − ln x�xe−tx� . �B5�

Using Eq. �B3�, one obtains at leading order

S�M� � ln�MA ln M� . �B6�

3. Decay of typical values Yk
typ
„M…=eln Yk

To compute the disorder average of the logarithm of Yk,
we start from Eqs. �A15� and �A16�. Using Eq. �B3�, we
obtain

ln��
i=1

M

xi� = 	
0

+� dt

t
�e−t − �e−tx�M� � 	

0

+� dt

t
�e−t

− e−MAt ln�1/t�� � ln�MA ln M� , �B7�

and as in Eq. �A18� with �=1

ln��
i=1

M

xi
k� = 	

0

+� dt

t
�e−t − �e−txk

�M� � �1 − k�
��1�

+ k ln�M
A

k

− 
�−

1

k
��� , �B8�

so that finally the leading term is �Eq. �A15��

ln Yk = ln��
i=1

M

xi
k� − k ln��

i=1

M

xi� � − k ln�ln M� , �B9�

i.e.,

Yk
typ�M� = eln Yk �

1

�ln M�k . �B10�

4. Finite-size scaling in the critical region

The comparison of the results for the entropy, for the
disorder-averaged values, and for the typical values of the Yk
between the phase ��1 and the critical point �c=1 shows
that the appropriate scaling variable is �1−��ln M, corre-
sponding to a finite-size exponent
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�Lévy = 1. �B11�

This is in contrast with the random energy model, where the
number of configurations is M =2N, and the appropriate
finite-size scaling behavior �Eq. �30�� is �Tc−T�N1/2= �1
−���ln M�1/2 with �REM =2.

5. Probability distributions of wmax and of Y2

We show in Fig. 12 the finite-size probability distributions

of the maximal weight wmax and Y2 at the critical value �c
=1, to compare with the corresponding figures given in the
text for the REM �Fig. 8� and for the DPCT �Fig. 9� with the
correspondence M =2N. As in Eq. �58�, the behavior of the
probability distribution P�c,M�wmax� near wmax→1 for finite
sums of M terms at the critical value �c=1 is of the form

P�c,M�wmax� �
wmax→1

AM�1 − wmax��. �B12�

The amplitude AM of these rare events is the amplitude that
governs the disorder-averaged values Yk of Eq. �B4�,

AM �
M→�

1

ln M
. �B13�

The singularity exponent � is simply

�Lévy = 0 �B14�

in continuity with the rare events in the region ��1. This
value is the same as in the REM �Eq. �62�� but different from
the value measured in the DPCT �Eq. �64��.

6. Conclusion: Comparison with the REM and the DPCT

In this appendix, we have described the weight statistics
in Lévy sums for the critical value �c=1, to compare with
the REM and the DPCT cases studied in the text. Although
the three models have the same properties in the low-
temperature phase with �=T /Tc�1, we find here that the
three models have different critical finite-size properties. The
REM and the Lévy sums involve a single finite-size expo-
nent,

�REM = 2, �B15�

�Lévy = 1, �B16�

and both have a singularity exponent

�REM = 0 = �Lévy, �B17�

in continuity with its low-temperature value �=�−1→0.
On the contrary, the DPCT involves two exponents

�DPCT = 2, �B18�

�DPCT� = 1. �B19�

The exponent �=2 governs the thermodynamics, in particu-
lar the entropy and the specific heat, whereas ��=1 governs
the Yk statistics. Moreover, the singularity exponent at criti-
cality,

�DPCT � 1.5, �B20�

is very different from the limit of its low-temperature value
�=T /Tc−1→0.
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FIG. 12. �Color online� Weight statistics in Lévy sums of M
terms �with 25�M �220� for the critical value �c=1. �a� Probabil-
ity distribution of the maximal weight wmax in the region 1/2
�wmax�1. �b� Probability distribution of Y2 in the region 1/2
�Y2�1.

CÉCILE MONTHUS AND THOMAS GAREL PHYSICAL REVIEW E 75, 051119 �2007�

051119-14



�1� K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 �1986�.
�2� M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond �World Scientific, Singapore, 1987�.
�3� T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254, 215 �1995�.
�4� C. Monthus and T. Garel, arXiv:cond-mat/0701699, Phys. Rev.

E �to be published�.
�5� F. Wegner, Z. Phys. B 36, 209 �1980�; C. Castellani and L.

Peliti, J. Phys. A 19, L429 �1986�; M. Janssen, Int. J. Mod.
Phys. B 8, 943 �1994�; M. Janssen, Phys. Rep. 295, 1 �1998�;
B. Huckestein, Rev. Mod. Phys. 67, 357 �1995�.

�6� F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 �2000�;
A. D. Mirlin and F. Evers, Phys. Rev. B 62, 7920 �2000�; F.
Evers, A. Mildenberger, and A. D. Mirlin, ibid. 64, 241303
�2001�; A. Mildenberger, F. Evers, and A. D. Mirlin, ibid. 66,
033109 �2002�; A. D. Mirlin, Y. V. Fyodorov, A. Milden-
berger, and F. Evers, Phys. Rev. Lett. 97, 046803 �2006�.

�7� B. Derrida and H. Spohn, J. Stat. Phys. 51, 817 �1988�.
�8� J. Cook and B. Derrida, J. Stat. Phys. 63, 505 �1991�.
�9� S. N. Majumdar and P. L. Krapivsky, Phys. Rev. E 62, 7735

�2000�; 65, 036127 �2002�; D. S. Dean and S. N. Majumdar,
ibid. 64, 046121 �2001�.

�10� B. Derrida, Phys. Rev. B 24, 2613 �1981�.

�11� B. Derrida and G. Toulouse, J. Phys. �France� Lett. 46, L223
�1985�.

�12� B. Derrida and H. Flyvbjerg, J. Phys. A 20, 5273 �1987�.
�13� B. Derrida, in On Three Levels, edited by M. Fannes et al.

�Plenum Press, New York, 1994�.
�14� D. J. Gross and M. Mézard, Nucl. Phys. B 240, 431 �1984�.
�15� A. Bovier, I. Kurkova, and M. Löwe, Ann. Probab. 30, 605

�2002�.
�16� D. S. Fisher and D. A. Huse, Phys. Rev. B B43, 10728 �1991�.
�17� L. H. Tang, J. Stat. Phys. 77, 581 �1994�.
�18� C. Monthus and T. Garel, J. Stat. Mech.: Theory Exp. � 2007�

P03011.
�19� J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 �1990�.
�20� E. J. Gumbel, Statistics of Extreme �Columbia University

Press, New York, 1958�; J. Galambos, The Asymptotic Theory
of Extreme Order Statistics �Krieger, Malabar, FL, 1987�.

�21� J. P. Bouchaud and M. Mzard, J. Phys. A 30, 7997 �1997�.
�22� M. Mézard, G. Parisi, and M. A. Virasoro, J. Phys. �France�

Lett. 46, L217 �1985�.
�23� J. Vannimenus, G. Toulouse, and G. Parisi, J. Phys. �France�

42, 565 �1981�; A. Crisanti, T. Rizzo, T. Temesvari, Eur. Phys.
J. B 33, 203 �2003�.

CRITICAL WEIGHT STATISTICS OF THE RANDOM… PHYSICAL REVIEW E 75, 051119 �2007�

051119-15


